Spore Formation Of Asexual Reproduction

Many multicellular organisms form spores during their biological life cycle in a process called sporogenesis. Exceptions are animals and some protists, who undergo gametic meiosis immediately followed by fertilization. Plants and many algae on the other hand undergo sporic meiosis where meiosis leads to the formation of haploid spores rather than gametes. These spores grow into multicellular individuals (called gametophytes in the case of plants) without a fertilization event. These haploid individuals give rise to gametes through mitosis. Meiosis and gamete formation therefore occur in separate generations or "phases" of the life cycle, referred to as alternation of generations. Since sexual reproduction is often more narrowly defined as the fusion of gametes (fertilization), spore formation in plant sporophytes and algae might be considered a form of asexual reproduction (agamogenesis) despite being the result of meiosis and undergoing a reduction in ploidy. However, both events (spore formation and fertilization) are necessary to complete sexual reproduction in the plant life cycle.
Fungi and some algae can also utilize true asexual spore formation, which involves mitosis giving rise to reproductive cells called mitospores that develop into a new organism after dispersal. This method of reproduction is found for example in conidial fungi and the red alga Polysiphonia, and involves sporogenesis without meiosis. Thus the chromosome number of the spore cell is the same as that of the parent producing the spores. However, mitotic sporogenesis is an exception and most spores, such as those of plants, most Basidiomycota, and many algae, are produced by meiosis.

Vegetative Propagation Of Asexual Reproduction

Vegetative reproduction is a type of asexual reproduction found in plants where new individuals are formed without the production of seeds or spores by meiosis or syngamy. Examples of vegetative reproduction include the formation of miniaturized plants called plantlets on specialized leaves (for example in kalanchoe) and some produce new plants out of rhizomes or stolon (for example in strawberry). Other plants reproduce by forming bulbs or tubers (for example tulip bulbs and dahlia tubers). Some plants produce adventitious shoots and suckers that form along their lateral roots. Plants that reproduce vegetatively may form a clonal colony, where all the individuals are clones, and the clones may cover a large area.

Budding Of Asexual Reproduction

Some cells split via Budding (for example baker's yeast), resulting in a 'mother' and 'daughter' cell. The offspring organism is smaller than the parent. Budding is also known on a multicellular level; an animal example is the hydra, which reproduces by budding. The buds grow into fully matured individuals which eventually break away from the parent organism.
For example, if potatoes are left in warm conditions for too long they begin to sprout from the buds, which are commonly referred to as eyes.internal budding or Endodyogeny is a process of asexual reproduction, favoured by parasites such as Toxoplasma gondii. It involves an unusual process in which two daughter cells are produced inside a mother cell, which is then consumed by the offspring prior to their separation.
Endopolygeny is the division into several organisms at once by internal budding. also budding (external or internal) is present in some worm like Taenia or  Echinococci ; these worm produde cyst and then produce (invaginated or evaginated) protoscolex with budding.

Multiple Fission Of Asexual Reproduction


Multiple Fission at the cellular level occurs in many protists, e.g. sporozoans and algae. The nucleus of the parent cell divides several times by mitosis, producing several nuclei. The cytoplasm then separates, creating multiple daughter cells.
In apicomplexans, multiple fission, or schizogony, is manifested either as merogony, sporogony or gametogony. Merogony results in merozoites, which are multiple daughter cells,that originate within the same cell membrane, sporogony results in sporozoites, and gametogony results in microgametes.
In multiple fission, the nucleus of the parent cell divides by mitosis several times, producing several nuclei. The cytoplasm then separates, creating multiple daughter cells.

Fission Of Asexual Reproduction



Fission an important form of fission is binary fisson but there is some other type of fission that called mutifission. In binary fission, the parent organism is replaced by two daughter organisms, because it literally divides in two. Organisms, both prokaryotes (the archaea and the bacteria), and eukaryotes (such as protists and unicellular fungi), reproduce asexually through binary fission; most of these are also capable of sexual reproduction.

Types of asexual reproduction

There Are Six Type Of Types Of Asexual Reproduction


  1. Fission
  2. Budding
  3. Vegetative propagation
  4. Spore formation
  5. Fragmentation
  6. Agamogenesis

Definition : Asexual Reproduction

Definition
Asexual reproduction is a mode of reproduction by which offspring arise from a single parent, and inherit the genes of that parent only; it is reproduction which almost always does not involve meiosis, ploidy reduction, or fertilization. The offspring will be exact genetic copies of the parent, except in the specific case of automixis. A more stringent definition is agamogenesis which is reproduction without the fusion of gametes. Asexual reproduction is the primary form of reproduction for single-celled organisms such as the archaea, bacteria, and protists. Many plants and fungi reproduce asexually as well.
While all prokaryotes reproduce asexually (without the formation and fusion of gametes), mechanisms for lateral gene transfer such as conjugation, transformation andtransduction are sometimes likened to sexual reproduction. A complete lack of sexual reproduction is relatively rare among multicellular organisms, particularly animals. It is not entirely understood why the ability to reproduce sexually is so common among them. Current hypotheses  suggest that asexual reproduction may have short term benefits when rapid population growth is important or in stable environments, while sexual reproduction offers a net advantage by allowing more rapid generation of genetic diversity, allowing adaptation to changing environments. Developmental constraints[3] may underlie why few animals have relinquished sexual reproduction completely in their life-cycles. Another constraint on switching from sexual to asexual reproduction would be the concomitant loss of meiosis and the protective recombinational repair of DNA damage afforded as one function of meiosis. (Also see Meiosis section: Origin and function of meiosis)