Endothelial stem cell : Role in recovery


ESCs and EPCs eventually differentiate into ECs. The endothelium secretes soluble factors to regulate vasodilatation and to preserve homeostasis. When there is any dysfunction in the endothelium, the body aims to repair the damage. Resident ESCs can generate mature ECs that replace the damaged ones. However, the intermediate progenitor cell cannot always generate functional ECs. This is because some of the differentiated cells may just have angiogenic properties.
Studies have shown that when vascular trauma occurs, EPCs and circulating endothelial progenitors (CEPs) are attracted to the site due to the release of specific chemokines. CEPs are derived from EPCs within the bone marrow, and the bone marrow is a reservoir of stem and progenitor cells. These cell types accelerate the healing process and prevent further complications such as hypoxia by gathering the cellular materials to reconstruct the endothelium.
Endothelium dysfunction is a prototypical characteristic of vascular disease, common in patients with autoimmune diseases such as systemic lupus erythematosus. Further, there is an inverse relationship between age and levels of EPCs. With a decline in EPCs the body loses its ability to repair the endothelium.
The use of stem cells for treatment has become a growing interest in the scientific community. Distinguishing between an ESC and its intermediate progenitor is nearly impossible, so research is now being done broadly on EPCs. One study showed that brief exposure to sevoflurane promoted growth and proliferation of EPCs.  Sevoflurane is used in general anesthesia, but this finding shows the potential to induce endothelial progenitors. Using stem cells for cell replacement therapies is known as “regenerative medicine”, which is a booming field that is now working on transplanting cells as opposed to bigger tissues or organs.

No comments:

Post a Comment