Mycocepurus smithii Of Himler research

Mycocepurus smithii Of Himler research



The research team was led by a graduate student at the University of Texas at Austin in the United States, Anna Himler. The researchers initially were interested in the ants' capability for cultivating fungus. The researchers used DNA profiling to confirm that each member of the colony was genetically identical to the queen. They also discovered through a process of dissection that the mussel organ, a female docking apparatus within the vagina used to hook the mate's genitalia, had degenerated in members of this species. A total of six separate tests were carried out, with the researchers unable to locate any male members of the species. The team's findings were then published in the journal Proceedings of the Royal Society B.

Nest architecture Of Mycocepurus Smithii

Nest architecture Of Mycocepurus Smithii 

M. Smithii nests in Puerto Rico, Costa Rica, and Trinidad have a single entrance, though the close proximity to other nests in high colony-density areas may give the illusion of multiple entrances.[2] M. Smithii nests consist of a mound excavated around an entrance roughly 1.2 mm in diameter.[4] This leads to a vertical tunnel opening into the garden chamber at a depth of approximately 12.5 mm.[4] M. Smithii maintain narrow tunnels (diameter of 1.3 mm) which do not allow two ants to pass each other in the tunnel (head size is approximately 0.7 mm for workers and 0.9 mm for queens).[2] The tunnels also have a number of slightly larger sections (approximately 3.6 mm diameter) which would allow passing while also facilitating information exchange. Narrow tunnels are presumably easier (energetically cheaper) to construct and may also aide in leveling the humidity or temperature of the colony or preventing predatory intrusions.[2]

Introduction Of Mycocepurus Smithii

Introduction Of Mycocepurus Smithii


Ants of the genus Mycocepurus are distinctly recognizable for the crown-like cluster of horns on their promesonotum, the fused mesonotum and pronotum on the front of their alitrunk or midsection. M. smithii has sharp, protruding propodeal (posterior of the alitrunk) spines unlike M. obsoletus whose propodeal spines are blunt. Workers also do not have developed promesonotal spines in the center of their crown.

Definition Of Mycocepurus Smithii

Definition Of Mycocepurus Smithii

Mycocepurus smithii is an attine fungus-growing ant from Latin America whose species consists exclusively of females which reproduce asexually. The queen reproduces by parthenogenesis and all ants in a colony are female clones of the queen. The ants cultivate a garden of fungus inside their colony grown with pieces of dead vegetables and other insects. It is this capacity for farming which initially prompted research into the species as a basal genus member would provide insight into the natural history of the fungal-cultivating ant tribe, Attini.

Mycocepurus smithii


Mycocepurus smithii is an attine fungus-growing ant from Latin America whose species consists exclusively of females which reproduce asexually. The queen reproduces by parthenogenesis and all ants in a colony are female clones of the queen. The ants cultivate a garden of fungus inside their colony grown with pieces of dead vegetables and other insects. It is this capacity for farming which initially prompted research into the species as a basal genus member would provide insight into the natural history of the fungal-cultivating ant tribe, Attini.

Sexual Reproduction Of Fish

The vast majority of fish species lay eggs that are then fertilized by the male, some species lay their eggs on a substrate like a rock or on plants, while others scatter their eggs and the eggs are fertilized as they drift or sink in the water column. Some fish species use internal fertilization and then disperse the developing eggs or give birth to live offspring. Fish that have live-bearing offspring include the Guppy and Mollies or Poecilia. Fishes that give birth to live young can be ovoviviparous, where the eggs are fertilized within the female and the eggs simply hatch within the female body, or in seahorses, the male carries the developing young within a pouch, and gives birth to live young. Fishes can also be viviparous, where the female supplies nourishment to the internally growing offspring. Some fish are hermaphrodites, where a single fish is both male and female and can produce eggs and sperm. In hermaphroditic fish, some are male and female at the same time while in other fish they are serially hermaphroditic; starting as one sex and changing to the other. In at least one hermaphroditic species, self-fertilization occurs when the eggs and sperm are released together. Internal self-fertilization may occur in some other species. One fish species does not reproduce by sexual reproduction but uses sex to produce offspring; Poecilia formosa is a unisex species that uses a form of parthenogenesis called gynogenesis, where unfertilized eggs develop into embryos that produce female offspring. Poecilia formosa mate with males of other fish species that use internal fertilization, the sperm does not fertilize the eggs but stimulates the growth of the eggs which develops into embryos.

Marsupials:Reproduction


Marsupials 
Marsupials' reproductive systems differ markedly from those of placental mammals. The female develops a kind of yolk sac in her womb which delivers nutrients to the embryo. Embryos of some marsupials additionally form placenta-like organs that connect them to the uterine wall, although it is not certain that they transfer nutrients from the mother to the embryo. Pregnancy is very short, typically 4 to 5 weeks, and the embryo is born at a very young stage of development.

Monotremes

Monotremes
Monotremes, only five species of which exist, all from Australia and New Guinea, are mammals that lay eggs. They have one opening for excretion and reproduction called the cloaca. They hold the eggs internally for several weeks, providing nutrients, and then lay them and cover them like birds. After less than two weeks the young hatches and crawls into its mother's pouch, much like marsupials, where it nurses for several weeks as it grows.

Birth-Sexual reproduction




Once the fetus is sufficiently developed, chemical signals start the process of birth, which begins with contractions of the uterus and the dilation of the cervix. The fetus then descends to the cervix, where it is pushed out into the vagina, and eventually out of the female. The newborn, which is called an infant in humans, should typically begin respiration on its own shortly after birth. Not long after, the placenta is passed as well. Most mammals eat this, as it is a good source of protein and other vital nutrients needed for caring for the young. The end of the umbilical cord attached to the young's abdomen eventually falls off on its own.

Gestation : Sexual Reproduction





Gestation, called pregnancy in humans, is the period of time during which the fetus develops, dividing via mitosis inside the female. During this time, the fetus receives all of its nutrition and oxygenated blood from the female, filtered through the placenta, which is attached to the fetus' abdomen via an umbilical cord. This drain of nutrients can be quite taxing on the female, who is required to ingest slightly higher levels of calories. In addition, certain vitamins and other nutrients are required in greater quantities than normal, often creating abnormal eating habits. The length of gestation, called the gestation period, varies greatly from species to species; it is 40 weeks in humans, 56–60 in giraffes and 16 days in hamsters.

Female Placental Mammals

The mammalian female reproductive system likewise contains two main divisions: the vagina and uterus, which act as the receptacle for the sperm, and the ovaries, which produce the female's ova. All of these parts are always internal. The vagina is attached to the uterus through the cervix, while the uterus is attached to the ovaries via the Fallopian tubes. At certain intervals, the ovaries release an ovum, which passes through the fallopian tube into the uterus.
If, in this transit, it meets with sperm, the egg selects sperm with which to merge; this is termed fertilization. The fertilization usually occurs in the oviducts, but can happen in the uterus itself. The zygote then implants itself in the wall of the uterus, where it begins the processes of embryogenesis and morphogenesis. When developed enough to survive outside the womb, the cervix dilates and contractions of the uterus propel the fetus through the birth canal, which is the vagina.
The ova, which are the female sex cells, are much larger than the sperm and are normally formed within the ovaries of the fetus before its birth. They are mostly fixed in location within the ovary until their transit to the uterus, and contain nutrients for the later zygote and embryo. Over a regular interval, in response to hormonal signals, a process of oogenesis matures one ovum which is released and sent down the Fallopian tube. If not fertilized, this egg is released through menstruation in humans and other great apes, and reabsorbed in other mammals in the estrus cycle.

Male Placental Mammals

Male Placental Mammals

                     Male Placental Mammals

The mammalian male reproductive system contains two main divisions, the penis and the testicles, the latter of which is where sperm are produced. In humans, both of these organs are outside the abdominal cavity, but they can be primarily housed within the abdomen in other animals. For instance, a dog's penis is internal except when mating. Having the testicles outside the abdomen best facilitates temperature regulation of the sperm, which require specific temperatures to survive. The external location may also cause a reduction in the heat-induced contribution to the spontaneous mutation rate in male germinal tissue. Sperm are the smaller of the two gametes and are generally very short-lived, requiring males to produce them continuously from the time of sexual maturity until death. The produced sperm are stored in the epididymis until ejaculation. The sperm cells are motile and they swim using tail-like flagella to propel themselves towards the ovum. The sperm follows temperature gradients (thermotaxis) and chemical gradients (chemotaxis) to locate the ovum.

Sexual Reproduction : Mammals

There are three extant kinds of mammals: Monotremes, Placentals and Marsupials, all with internal fertilization. In placental mammals, offspring are born as juveniles: complete animals with the sex organs present although not reproductively functional. After several months or years, the sex organs develop further to maturity and the animal becomes sexually mature. Most female mammals are only fertile during certain periods during their estrous cycle, at which point they are ready to mate. Individual male and female mammals meet and carry out copulation.[citation needed] For most mammals, males and females exchange sexual partners throughout their adult lives.

Sexual Reproduction : Insects

Sexual Reproduction : Insects

Insect species make up more than two-thirds of all extant animal species, and most insect species use sex for reproduction, though some species are facultatively parthenogenetic. Many species have sexual dimorphism, while in others the sexes look nearly identical. Typically they have two sexes with males producing spermatozoa and females ova. The ova develop into eggs that have a covering called the chorion, which forms before internal fertilization. Insects have very diverse mating and reproductive strategies most often resulting in the male depositing spermatophore within the female, which stores the sperm until she is ready for egg fertilization. After fertilization, and the formation of a zygote, and varying degrees of development; the eggs are deposited outside the female in many species, or in some, they develop further within the female and live born offspring are produced.

Sexual Reproduction : Animals

Fertilisation 

Fertilisation (also known as conception, fecundation and syngamy) is the fusion of gametes to initiate the development of a new individual organism. In animals, the process involves the fusion of an ovum with a sperm, which eventually leads to the development of an embryo. Depending on the animal species, the process can occur within the body of the female in internal fertilisation, or outside (external fertilisation). The entire process of development of new individuals is called reproduction.



 Animal sexual behavior


Animal sexual behaviour takes many different forms, even within the same species. Among animals, researchers have observed monogamy, promiscuity, sex between species, sexual arousal from objects or places, sex apparently via duress or coercion, copulation with dead animals, homosexual sexual behaviour, heterosexual, bisexual sexual behaviour, situational sexual behaviour, and a range of other practices.


Sexual Reproduction : Fungi

A fungus (/ˈfʌŋɡəs/; plural: fungi or funguses) is a member of a large group of eukaryotic organisms that includes microorganisms such as yeasts and molds (British English: moulds), as well as the more familiar mushrooms. These organisms are classified as a kingdom, Fungi, which is separate from plants, animals, and bacteria. One major difference is that fungal cells have cell walls that contain chitin, unlike the cell walls of plants, which contain cellulose. These and other differences show that the fungi form a single group of related organisms, named the Eumycota (true fungi or Eumycetes), that share a common ancestor (a monophyletic group). This fungal group is distinct from the structurally similar myxomycetes (slime molds) and oomycetes (water molds). The discipline of biology devoted to the study of fungi is known as mycology (from the Greek μύκης, mukēs, meaning "fungus"). Mycology has often been regarded as a branch of botany, even though it is a separate kingdom in biological taxonomy. Genetic studies have shown that fungi are more closely related to animals than to plants.

Sexual Reproduction : Bryophytes

The bryophytes, which include liverworts, hornworts and mosses, reproduce both sexually and vegetatively. They are small plants found growing in moist locations and like ferns, have motile sperm with flagella and need water to facilitate sexual reproduction. These plants start as a haploid spore that grows into the dominate form, which is a multicellular haploid body with leaf-like structures that photosynthesize. Haploid gametes are produced in antherida and archegonia by mitosis. The sperm released from the antherida respond to chemicals released by ripe archegonia and swim to them in a film of water and fertilize the egg cells thus producing a zygote. The zygote divides by mitotic division and grows into a sporophyte that is diploid. The multicellular diploid sporophyte produces structures called spore capsules, which are connected by seta to the archegonia. The spore capsules produce spores by meiosis, when ripe the capsules burst open and the spores are released. Bryophytes show considerable variation in their breeding structures and the above is a basic outline. Also in some species each plant is one sex while other species produce both sexes on the same plant.

Sexual Reproduction : Ferns

Ferns mostly produce large diploid sporophytes with rhizomes, roots and leaves; and on fertile leaves called sporangium, spores are produced. The spores are released and germinate to produce short, thin gametophytes that are typically heart shaped, small and green in color. The gametophytes or thallus, produce both motile sperm in the antheridia and egg cells in separate archegonia. After rains or when dew deposits a film of water, the motile sperm are splashed away from the antheridia, which are normally produced on the top side of the thallus, and swim in the film of water to the archegonia where they fertilize the egg. To promote out crossing or cross fertilization the sperm are released before the eggs are receptive of the sperm, making it more likely that the sperm will fertilize the eggs of different thallus. A zygote is formed after fertilization, which grows into a new sporophytic plant. The condition of having separate sporephyte and gametophyte plants is called alternation of generations. Other plants with similar reproductive means include the Psilotum, Lycopodium, Selaginella and Equisetum.

Dominant plant form on land and they reproduce by sexual and asexual means

Flowering plants are the dominant plant form on land and they reproduce by sexual and asexual means. Often their most distinguishing feature is their reproductive organs, commonly called flowers. The anther produces male gametophytes, the sperm is produced in pollen grains, which attach to the stigma on top of a carpel, in which the female gametophytes (inside ovules) are located. After the pollen tube grows through the carpel's style, the sex cell nuclei from the pollen grain migrate into the ovule to fertilize the egg cell and endosperm nuclei within the female gametophyte in a process termed double fertilization. The resulting zygote develops into an embryo, while the triploid endosperm (one sperm cell plus two female cells) and female tissues of the ovule give rise to the surrounding tissues in the developing seed. The ovary, which produced the female gametophyte(s), then grows into a fruit, which surrounds the seed(s). Plants may either self-pollinate or cross-pollinate. Nonflowering plants like ferns, moss and liverworts use other means of sexual reproduction.

sexual reproduction : Flowering plants

Flowering plants are the dominant plant form on land and they reproduce by sexual and asexual means. Often their most distinguishing feature is their reproductive organs, commonly called flowers. The anther produces male gametophytes, the sperm is produced in pollen grains, which attach to the stigma on top of a carpel, in which the female gametophytes (inside ovules) are located. After the pollen tube grows through the carpel's style, the sex cell nuclei from the pollen grain migrate into the ovule to fertilize the egg cell and endosperm nuclei within the female gametophyte in a process termed double fertilization. The resulting zygote develops into an embryo, while the triploid endosperm (one sperm cell plus two female cells) and female tissues of the ovule give rise to the surrounding tissues in the developing seed. The ovary, which produced the female gametophyte(s), then grows into a fruit, which surrounds the seed(s). Plants may either self-pollinate or cross-pollinate. Nonflowering plants like ferns, moss and liverworts use other means of sexual reproduction.

sexual reproduction: Plants

Animals typically produce male gametes called sperm, and female gametes called eggs and ova, following immediately after meiosis, with the gametes produced directly by meiosis. Plants on the other hand have mitosis occurring in spores, which are produced by meiosis. The spores germinate into the gametophyte phase. The gametophytes of different groups of plants vary in size; angiosperms have as few as three cells in pollen, and mosses and other so called primitive plants may have several million cells. Plants have an alternation of generations where the sporophyte phase is succeeded by the gametophyte phase. The sporophyte phase produces spores within the sporangium by meiosis.

Definition Of Sexual Reproduction

Definition: Sexual reproduction is a process that creates a new organism by combining the genetic material of two organisms; it occurs both in eukaryotes and in prokaryotes. A key similarity between bacterial sex (bacterial conjugation) and eukaryotic sex is that DNA originating from two different individuals (parents) join up so that homologous sequences are aligned with each other, and this is followed by exchange of genetic information (a process called genetic recombination). After the new recombinant chromosome is formed, it is passed on to progeny).
On the other hand, bacterial conjugation, a type of transfer of DNA between two bacteria, is often regarded as equivalent of sexual reproduction because the mechanics are similar. This is because bacterial conjugation is controlled by plasmid genes that are adapted for spreading copies of the plasmid between bacteria. The infrequent integration of a plasmid into a host bacterial chromosome, and the subsequent transfer of a part of the host chromosome to another cell do not appear to be bacterial adaptations.
In contrast, bacterial transformation can be regarded as a form of sex in bacteria. Bacterial transformation is a complex process encoded by numerous bacterial genes, and is clearly a bacterial adaptation for DNA transfer. This process occurs naturally in at least 40 bacterial species. For a bacterium to bind, take up, and recombine exogenous DNA into its chromosome, it must enter a special physiological state referred to as competence (see Natural competence). Sexual reproduction in early single-celled eukaryotes may have evolved from bacterial transformation.
Sexual reproduction is the primary method of reproduction for the vast majority of macroscopic organisms, including almost all animals and plants. The evolution of sexual reproduction is a major puzzle. The first fossilized evidence of sexual reproduction in organisms such as eukaryotes is in the Stenian period, about 1 to 1.2 billion years ago. There are two main processes during sexual reproduction in eukaryotes: meiosis, involving the halving of the number of chromosomes; and fertilization, involving the fusion of two gametes and the restoration of the original number of chromosomes. During meiosis, the chromosomes of each pair usually cross over to achieve homologous recombination. Evolutionary thought proposes several explanations for why sexual reproduction developed and why it is maintained. These reasons include fighting the accumulation of deleterious mutations, increasing rate of adaptation to changing environments (see the red queen hypothesis), dealing with competition (see the tangled bank hypothesis) or as an adaptation for repairing DNA damage. The maintenance of sexual reproduction has been explained by theories that work at several different levels of selection, though some of these models remain controversial. New models presented in recent years, however, suggest a basic advantage for sexual reproduction in slowly reproducing, complex organisms, exhibiting characteristics that depend on the specific environment that the given species inhabit, and the particular survival strategies that they employ.

Reproduction : Sexual reproduction

Sexual reproduction is a process that creates a new organism by combining the genetic material of two organisms; it occurs both in eukaryotes and in prokaryotes. A key similarity between bacterial sex (bacterial conjugation) and eukaryotic sex is that DNA originating from two different individuals (parents) join up so that homologous sequences are aligned with each other, and this is followed by exchange of genetic information (a process called genetic recombination). After the new recombinant chromosome is formed, it is passed on to progeny).
On the other hand, bacterial conjugation, a type of transfer of DNA between two bacteria, is often regarded as equivalent of sexual reproduction because the mechanics are similar. This is because bacterial conjugation is controlled by plasmid genes that are adapted for spreading copies of the plasmid between bacteria. The infrequent integration of a plasmid into a host bacterial chromosome, and the subsequent transfer of a part of the host chromosome to another cell do not appear to be bacterial adaptations.
In contrast, bacterial transformation can be regarded as a form of sex in bacteria. Bacterial transformation is a complex process encoded by numerous bacterial genes, and is clearly a bacterial adaptation for DNA transfer. This process occurs naturally in at least 40 bacterial species. For a bacterium to bind, take up, and recombine exogenous DNA into its chromosome, it must enter a special physiological state referred to as competence (see Natural competence). Sexual reproduction in early single-celled eukaryotes may have evolved from bacterial transformation.
Sexual reproduction is the primary method of reproduction for the vast majority of macroscopic organisms, including almost all animals and plants. The evolution of sexual reproduction is a major puzzle. The first fossilized evidence of sexual reproduction in organisms such as eukaryotes is in the Stenian period, about 1 to 1.2 billion years ago. There are two main processes during sexual reproduction in eukaryotes: meiosis, involving the halving of the number of chromosomes; and fertilization, involving the fusion of two gametes and the restoration of the original number of chromosomes. During meiosis, the chromosomes of each pair usually cross over to achieve homologous recombination. Evolutionary thought proposes several explanations for why sexual reproduction developed and why it is maintained. These reasons include fighting the accumulation of deleterious mutations, increasing rate of adaptation to changing environments (see the red queen hypothesis), dealing with competition (see the tangled bank hypothesis) or as an adaptation for repairing DNA damage. The maintenance of sexual reproduction has been explained by theories that work at several different levels of selection, though some of these models remain controversial. New models presented in recent years, however, suggest a basic advantage for sexual reproduction in slowly reproducing, complex organisms, exhibiting characteristics that depend on the specific environment that the given species inhabit, and the particular survival strategies that they employ.

Brachionus & Rotifer : Examples in animals

Brachionus

Rotifer
There are examples of parthenogenesis in the hammerhead shark[20] and the blacktip shark. In both cases, the sharks had reached sexual maturity in captivity in the absence of males, and in both cases the offspring were shown to be genetically identical to the mothers.
Reptiles use the ZW sex-determination system, which produces either males (with ZZ sex chromosomes) or females (with ZW or WW sex chromosomes). Until 2010, it was thought that the ZW chromosome system used by reptiles was incapable of producing viable WW offspring, but a (ZW) female boa constrictor was discovered to have produced viable female offspring with WW chromosomes. The female boa could have chosen any number of male partners (and had successfully in the past) but on these occasions she reproduced asexually, creating 22 female babies with WW sex-chromosomes.
Polyembryony is a widespread form of asexual reproduction in animals, whereby the fertilized egg or a later stage of embryonic development splits to form genetically identical clones. Within animals, this phenomenon has been best studied in the parasitic Hymenoptera. In the 9-banded armadillos, this process is obligatory and usually gives rise to genetically identical quadruplets. In other mammals, monozygotic twinning has no apparent genetic basis, though its occurrence is common. There are at least 10 million identical human twins and triplets in the world today.
Bdelloid rotifers reproduce exclusively asexually, and all individuals in the class Bdelloidea are females. Asexuality evolved in these animals millions of years ago and has persisted since. There is evidence to suggest that asexual reproduction has allowed the animals to evolve new proteins through the Meselson effect that have allowed them to survive better in periods of dehydration.
Molecular evidence strongly suggest that at least two species of the stick insect genus Timema have used only asexual (parthenogenetic) reproduction for one million years, the longest period known for any insect.

Inheritance of asexual reproduction in sexual species

Brachionus

Rotifer
For example, in the rotifer Brachionus calyciflorus asexual reproduction (obligate parthenogenesis) can be inherited by a recessive allele, which leads to loss of sexual reproduction in homozygous offspring. Inheritance of asexual reproduction by a single recessive locus has also been found in the parasitoid wasp Lysiphlebus fabarum.

Alternation Between Sexual And Asexual Reproduction

Some species alternate between the sexual and asexual strategies, an ability known as heterogamy, depending on conditions. Alternation is observed in several rotifer species and a few types of insects, such as aphids which will, under certain conditions, produce eggs that have not gone through meiosis, thus cloning themselves. The cape bee Apis mellifera subsp. capensis can reproduce asexually through a process called thelytoky. A few species of amphibians, reptiles, and birds have a similar ability (see parthenogenesis for examples). For example, the freshwater crustacean Daphnia reproduces by parthenogenesis in the spring to rapidly populate ponds, then switches to sexual reproduction as the intensity of competition and predation increases. Another example are monogonont rotifers of the genus Brachionus, which reproduce via cyclical parthenogenesis: at low population densities females produce asexually and at higher densities a chemical cue accumulates and induces the transition to sexual reproduction. Many protists and fungi alternate between sexual and asexual reproduction.
For example, the slime mold Dictyostelium undergoes binary fission (mitosis) as single-celled amoebae under favorable conditions. However, when conditions turn unfavorable, the cells aggregate and follow one of two different developmental pathways, depending on conditions. In the social pathway, they form a multicellular slug which then forms a fruiting body with asexually generated spores. In the sexual pathway, two cells fuse to form a giant cell that develops into a large cyst. When this macrocyst germinates, it releases hundreds of amoebic cells that are the product of meiotic recombination between the original two cells.
The hyphae of the common mold (Rhizopus) are capable of producing both mitotic as well as meiotic spores. Many algae similarly switch between sexual and asexual reproduction. A number of plants use both sexual and asexual means to produce new plants, some species alter their primary modes of reproduction from sexual to asexual under varying environmental conditions.

Apomixis And Nucellar Embryony Of Asexual Reproduction

Apomixis in plants is the formation of a new sporophyte without fertilization. It is important in ferns and in flowering plants, but is very rare in other seed plants. In flowering plants, the term "apomixis" is now most often used for agamospermy, the formation of seeds without fertilization, but was once used to include vegetative reproduction. An example of an apomictic plant would be the triploid European dandelion. Apomixis mainly occurs in two forms: In gametophytic apomixis, the embryo arises from an unfertilized egg within a diploid embryo sac that was formed without completing meiosis. In nucellar embryony, the embryo is formed from the diploid nucellus tissue surrounding the embryo sac. Nucellar embryony occurs in some citrus seeds. Male apomixis can occur in rare cases, such as the Saharan Cypress Cupressus dupreziana, where the genetic material of the embryo are derived entirely from pollen. The term "apomixis" is also used for asexual reproduction in some animals, notably water-fleas, Daphnia.

Parthenogenesis Of Asexual Reproduction

Parthenogenesis /ˌpɑrθənoʊˈdʒɛnəsɨs/ is a form of asexual reproduction in which growth and development of embryos occur without fertilization. In animals, parthenogenesis means development of an embryo from an unfertilized egg cell and is a component process of apomixis.
Gynogenesis and pseudogamy are closely related phenomena in which a sperm or pollen triggers the development of the egg cell into an embryo but makes no genetic contribution to the embryo. The rest of the cytology and genetics of these phenomena are mostly identical to that of parthenogenesis.
The word parthenogenesis comes from the Greek παρθένος, parthenos, meaning "virgin" and γένεσις, genesis, meaning "birth". The term is sometimes used inaccurately to describe reproduction modes in hermaphroditic species that can reproduce by themselves because they contain reproductive organs of both sexes in a single individual's body.
Parthenogenesis occurs naturally in many plants, some invertebrate animal species (including nematodes, water fleas, some scorpions, aphids, some bees, some Phasmida and parasitic wasps) and a few vertebrates (such as some fish, amphibians, reptiles and very rarely birds). This type of reproduction has been induced artificially in a few species including fish and amphibians.
Normal egg cells form after meiosis and are haploid, with half as many chromosomes as their mother's body cells. Haploid individuals, however, are usually non-viable, and parthenogenetic offspring usually have the diploid chromosome number. Depending on the mechanism involved in restoring the diploid number of chromosomes, parthenogenetic offspring may have anywhere between all and half of the mother's alleles. The offspring having all of the mother's genetic material are called full clones and those having only half are called "half clones". Full clones are usually formed without meiosis. If meiosis occurs, the offspring will get only a fraction of the mother's alleles.
arthenogenesis is a form of agamogenesis in which an unfertilized egg develops into a new individual. Parthenogenesis occurs naturally in many plants, invertebrates (e.g. water fleas, rotifers, aphids, stick insects, some ants, bees and parasitic wasps), and vertebrates (e.g. some reptiles, amphibians,rarely birds). In plants, apomixis may or may not involve parthenogenesis.

Cutting and Splicing DNA Molecules & Making Recombinant DNA - Modern Genetic Analysis

Cutting And Joining Of DNA Molecules

Cutting and Joining DNA Molecules


CUTTING DNA MOLECULES :

                                                  CUTTING DNA MOLECULES
   It is worth recalling that prior to 1970 there was simply no method available for cutting a duplex DNA \molecule into discrete fragments. DNA biochemistry was circumscribed by this impasse. It became apparent that the related phenomena of host-controlled restriction and modification might lead towards a solution to the problem when it was discovered that restriction involves specific endonucleases. The favourite organism of molecular biologists, E. coil K12, was the first to be studied in this regard, but turned out to be an unfortunate choice. Its endonuclease is perverse in the complexity of its behaviour. The breakthrough in 1970 came with the discovery in Hae,nophilus influenzae of an enzyme that behaves more simply. Present-day DNA technology is totally dependent upon our ability to cut DNA molecules at specific sites with restriction endonucleases. An account of host-controlled restriction and modification therefore forms the first part of this chapter.

Making Recombinant DNA - Modern Genetic Analysis

Cutting And Joining Of DNA Molecules

Cutting and Joining DNA Molecules


CUTTING DNA MOLECULES :

                                                  CUTTING DNA MOLECULES
   It is worth recalling that prior to 1970 there was simply no method available for cutting a duplex DNA \molecule into discrete fragments. DNA biochemistry was circumscribed by this impasse. It became apparent that the related phenomena of host-controlled restriction and modification might lead towards a solution to the problem when it was discovered that restriction involves specific endonucleases. The favourite organism of molecular biologists, E. coil K12, was the first to be studied in this regard, but turned out to be an unfortunate choice. Its endonuclease is perverse in the complexity of its behaviour. The breakthrough in 1970 came with the discovery in Hae,nophilus influenzae of an enzyme that behaves more simply. Present-day DNA technology is totally dependent upon our ability to cut DNA molecules at specific sites with restriction endonucleases. An account of host-controlled restriction and modification therefore forms the first part of this chapter.

cutting and splicing DNA Molecules

Cutting And Joining Of DNA Molecules

Cutting and Joining DNA Molecules


CUTTING DNA MOLECULES :

                                                  CUTTING DNA MOLECULES
   It is worth recalling that prior to 1970 there was simply no method available for cutting a duplex DNA \molecule into discrete fragments. DNA biochemistry was circumscribed by this impasse. It became apparent that the related phenomena of host-controlled restriction and modification might lead towards a solution to the problem when it was discovered that restriction involves specific endonucleases. The favourite organism of molecular biologists, E. coil K12, was the first to be studied in this regard, but turned out to be an unfortunate choice. Its endonuclease is perverse in the complexity of its behaviour. The breakthrough in 1970 came with the discovery in Hae,nophilus influenzae of an enzyme that behaves more simply. Present-day DNA technology is totally dependent upon our ability to cut DNA molecules at specific sites with restriction endonucleases. An account of host-controlled restriction and modification therefore forms the first part of this chapter.

Inhibiting The Differentiation Of Myocardiocytes By Hyaluronic Acid.


Myocardiocytes

Definition : 



Cardiac muscle cells or myocardiocytes (also known as cardiomyocytes[ or cardiac myocytes) are the muscle cells that make up the cardiac muscle. Each myocardial cell contains myofibrils, which are long chains of sarcomeres, the contractile units of muscle cells. Myocardiocytes show striations similar to those on skeletal muscle cells, but unlike multinucleated skeletal cells, they contain only one nucleus. Myocardiocytes have a high mitochondrial density, which allows them to produce ATP quickly, making them highly resistant to fatigue.

differentiation of endocrine myocardiocytes in the developing heart of the toad (bufo arenarum hensel)


Myocardiocytes

Definition : 



Cardiac muscle cells or myocardiocytes (also known as cardiomyocytes[ or cardiac myocytes) are the muscle cells that make up the cardiac muscle. Each myocardial cell contains myofibrils, which are long chains of sarcomeres, the contractile units of muscle cells. Myocardiocytes show striations similar to those on skeletal muscle cells, but unlike multinucleated skeletal cells, they contain only one nucleus. Myocardiocytes have a high mitochondrial density, which allows them to produce ATP quickly, making them highly resistant to fatigue.

Agamogenesis Of Asexual Reproduction


Agamogenesis is any form of reproduction that does not involve a male gamete. Examples are parthenogenesis and apomixis.



1 Parthenogenesis

2 Apomixis and nucellar embryony

Fragmentation Of Asexual Reproduction

Fragmentation is a form of asexual reproduction where a new organism grows from a fragment of the parent. Each fragment develops into a mature, fully grown individual. Fragmentation is seen in many organisms such as animals (some annelid worms, turbellarians and sea stars), fungi, and plants. Some plants have specialized structures for reproduction via fragmentation, such as gemma in liverworts. Most lichens, which are a symbiotic union of a fungus and photosynthetic algae or bacteria, reproduce through fragmentation to ensure that new individuals contain both symbiont. These fragments can take the form of soredia, dust-like particles consisting of fungal hyphen wrapped around photobiont cells.
clonal Fragmentation in multicellular or colonial organisms is a form of asexual reproduction or cloning where an organism is split into fragments. Each of these fragments develop into mature, fully grown individuals that are clones of the original organism. In echinoderms, this method of reproduction is usually known as fissiparity.