Role in tumor formation
A dis regulation of the cell cycle components may lead to tumor formation.
As mentioned above, some genes like the cell cycle inhibitors, RB, p53
etc., when they mutate, may cause the cell to multiply uncontrollably,
forming a tumor. Although the duration of cell cycle in tumor cells is
equal to or longer than that of normal cell cycle, the proportion of
cells that are in active cell division (versus quiescent cells in G0
phase) in tumors is much higher than that in normal tissue. Thus there
is a net increase in cell number as the number of cells that die by
apoptosis or senescence remains the same.
The cells which are actively undergoing cell cycle are targeted in cancer therapy as the DNA is relatively exposed during cell division and hence susceptible to damage by drugs or radiation. This fact is made use of in cancer treatment; by a process known as debunking, a significant mass of the tumor is removed which pushes a significant number of the remaining tumor cells from G0 to G1 phase (due to increased availability of nutrients, oxygen, growth factors etc.). Radiation or chemotherapy following the debunking procedure kills these cells which have newly entered the cell cycle.[
The fastest cycling mammalian cells in culture, crypt cells in the intestinal epithelium, have a cycle time as short as 9 to 10 hours. Stem cells in resting mouse skin may have a cycle time of more than 200 hours. Most of this difference is due to the varying length of G1, the most variable phase of the cycle. M and S do not vary much. In general, cells are most radio sensitive in late M and G2 phases and most resistant in late S.
For cells with a longer cell cycle time and a significantly long G1 phase, there is a second peak of resistance late in G1.
The pattern of resistance and sensitivity correlates with the level of sulfhydryl compounds in the cell. Hydrofoils are natural radioprotectors and tend to be at their highest levels in S and at their lowest near mitosis.
The cells which are actively undergoing cell cycle are targeted in cancer therapy as the DNA is relatively exposed during cell division and hence susceptible to damage by drugs or radiation. This fact is made use of in cancer treatment; by a process known as debunking, a significant mass of the tumor is removed which pushes a significant number of the remaining tumor cells from G0 to G1 phase (due to increased availability of nutrients, oxygen, growth factors etc.). Radiation or chemotherapy following the debunking procedure kills these cells which have newly entered the cell cycle.[
The fastest cycling mammalian cells in culture, crypt cells in the intestinal epithelium, have a cycle time as short as 9 to 10 hours. Stem cells in resting mouse skin may have a cycle time of more than 200 hours. Most of this difference is due to the varying length of G1, the most variable phase of the cycle. M and S do not vary much. In general, cells are most radio sensitive in late M and G2 phases and most resistant in late S.
For cells with a longer cell cycle time and a significantly long G1 phase, there is a second peak of resistance late in G1.
The pattern of resistance and sensitivity correlates with the level of sulfhydryl compounds in the cell. Hydrofoils are natural radioprotectors and tend to be at their highest levels in S and at their lowest near mitosis.
No comments:
Post a Comment